BitBasis
Types and operations for basis represented by bits in linear algebra.
For more details please ref to BitBasis.jl.
BitBasis.@bit_str
— Macro@bit_str -> BitStr64
Construct a bit string. such as bit"0000"
. The bit strings also supports string join
. Just use it like normal strings.
Example
julia> bit"10001"
10001 ₍₂₎
julia> bit"100_111_101"
100111101 ₍₂₎
julia> join(bit"1001", bit"11", bit"1110")
1001111110 ₍₂₎
julia> onehot(bit"1001")
16-element Vector{ComplexF64}:
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
1.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
BitBasis.@dit_str
— Macro@dit_str -> DitStr64
Construct a dit string. such as dit"0201;3"
. The dit strings also supports string join
. Just use it like normal strings.
Example
julia> dit"10201;3"
10201 ₍₃₎
julia> dit"100_121_121;3"
100121121 ₍₃₎
julia> join(dit"1021;3", dit"11;3", dit"1210;3")
1021111210 ₍₃₎
julia> onehot(dit"1021;3")
81-element Vector{ComplexF64}:
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
⋮
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
0.0 + 0.0im
BitBasis.@lbit_str
— Macro@lbit_str -> LongBitStr
Long bit string version of @bit_str
macro.
BitBasis.@ldit_str
— Macro@ldit_str -> LongDitStr
Long dit string version of @dit_str
macro.
Base.:==
— Method==(lhs::SubDitStr{D,N,T}, rhs::DitStr{D,N,T}) -> Bool
==(lhs::DitStr{D,N,T}, rhs::SubDitStr{D,N,T}) -> Bool
==(lhs::SubDitStr{D,N,T}, rhs::SubDitStr{D,N,T}) -> Bool
Compare the equality between SubDitStr
and DitStr
.
BitBasis.allone
— Methodallone(index::Integer, mask::Integer) -> Bool
Return true
if all masked position of index is 1.
Example
true
if all masked positions are 1.
julia> allone(0b1011, 0b1011)
true
julia> allone(0b1011, 0b1001)
true
julia> allone(0b1011, 0b0100)
false
BitBasis.anyone
— Methodanyone(index::Integer, mask::Integer) -> Bool
Return true
if any masked position of index is 1.
Example
true
if any masked positions is 1.
julia> anyone(0b1011, 0b1001)
true
julia> anyone(0b1011, 0b1100)
true
julia> anyone(0b1011, 0b0100)
false
BitBasis.baddrs
— Methodbaddrs(b::Integer) -> Vector
get the locations of nonzeros bits, i.e. the inverse operation of bmask.
BitBasis.basis
— Methodbasis(ditstr) -> UnitRange{DitStr{D,N,T}}
basis(DitStr{D,N,T}) -> UnitRange{DitStr{D,N,T}}
Returns the UnitRange
for basis in Hilbert Space of qudits.
BitBasis.bdistance
— Methodbdistance(i::Integer, j::Integer) -> Int
Return number of different bits.
BitBasis.bfloat
— Methodbfloat(b::Integer; nbits::Int=bit_length(b)) -> Float64
float view, with current bit numbering. See also bfloat_r
.
Ref: wiki: bit numbering
BitBasis.bfloat
— Methodbfloat(b::BitStr) -> Float64
BitBasis.bfloat_r
— Methodbfloat_r(b::Integer; nbits::Int=bit_length(b)) -> Float64
float view, with reversed bit numbering. See also bfloat
.
BitBasis.bfloat_r
— Methodbfloat_r(b::BitStr) -> Float64
BitBasis.bint
— Methodbint(b::BitStr) -> Integer
BitBasis.bint
— Methodbint(b; nbits=nothing) -> Int
integer view, with LSB 0 bit numbering. See also wiki: bit numbering
BitBasis.bint_r
— Methodbint_r(b; nbits::Int) -> Integer
integer read in inverse order.
BitBasis.bint_r
— Methodbint_r(b::BitStr) -> Integer
BitBasis.bit_length
— Methodbit_length(x::Integer) -> Int
Return the number of bits required to represent input integer x.
BitBasis.bitarray
— Methodbitarray(v::Vector, [nbits::Int]) -> BitArray
bitarray(v::Int, nbits::Int) -> BitArray
bitarray(nbits::Int) -> Function
Construct BitArray from an integer vector, if nbits not supplied, it is 64. If an integer is supplied, it returns a function mapping a Vector/Int to bitarray.
BitBasis.bmask
— Functionbmask(::Type{T}) where T <: Integer -> zero(T)
bmask([T::Type], positions::Int...) -> T
bmask([T::Type], range::UnitRange{Int}) -> T
Return an integer mask of type T
where 1
is the position masked according to positions
or range
. Directly use T
will return an empty mask 0
.
BitBasis.breflect
— Functionbreflect(b::Integer[, masks::Vector{Integer}]; nbits) -> Integer
Return left-right reflected integer.
Example
Reflect the order of bits.
julia> breflect(0b1011; nbits=4) == 0b1101
true
BitBasis.breflect
— Methodbreflect(bit_str[, masks])
Return left-right reflected bit string.
BitBasis.bsizeof
— Methodbsizeof(::Type)
Returns the size of given type in number of binary digits.
BitBasis.btruncate
— Methodbtruncate(b, n)
Truncate bits b
to given length n
.
BitBasis.controldo
— Methodcontroldo(f, itr::IterControl)
Execute f
while iterating itr
.
this is faster but equivalent than using itr
as an iterator. See also itercontrol
.
BitBasis.controller
— Methodcontroller([T=Int, ]cbits, cvals) -> Function
Return a function that checks whether a basis at cbits
takes specific value cvals
.
BitBasis.flip
— Methodflip(index::Integer, mask::Integer) -> Integer
Return an Integer with bits at masked position flipped.
Example
julia> flip(0b1011, 0b1011) |> BitStr{4}
0000 ₍₂₎
BitBasis.group_shift!
— Methodgroup_shift!(nbits, positions)
Shift bits on positions
together.
BitBasis.hypercubic
— Methodhypercubic(A::Array) -> Array
get the hypercubic representation for an array.
BitBasis.indicator
— Methodindicator(::Type{T}, k) -> T
Return an integer with k
-th bit set to 1.
BitBasis.indices_with
— Methodindices_with(n::Int, locs::Vector{Int}, vals::Vector{Int}) -> Vector{Int}
Return indices with specific positions locs
with value vals
in a hilbert space of n
qubits.
BitBasis.invorder
— Methodinvorder(X::AbstractVecOrMat)
Inverse the order of given vector/matrix X
.
BitBasis.ismatch
— Methodismatch(index::Integer, mask::Integer, target::Integer) -> Bool
Return true
if bits at positions masked by mask
equal to 1
are equal to target
.
Example
julia> n = 0b11001; mask = 0b10100; target = 0b10000;
julia> ismatch(n, mask, target)
true
BitBasis.itercontrol
— Methoditercontrol([T=Int], nbits, positions, bit_configs)
Returns an iterator which iterate through controlled subspace of bits.
Example
To iterate through all the bits satisfy 0xx10x1
where x
means an arbitrary bit.
julia> for each in itercontrol(7, [1, 3, 4, 7], (1, 0, 1, 0))
println(string(each, base=2, pad=7))
end
0001001
0001011
0011001
0011011
0101001
0101011
0111001
0111011
BitBasis.log2dim1
— Methodlog2dim1(X)
Returns the log2
of the first dimension's size.
BitBasis.log2i
— Functionlog2i(x::Integer) -> Integer
Return log2(x), this integer version of log2
is fast but only valid for number equal to 2^n.
BitBasis.neg
— Methodneg(b::BitStr) -> BitStr
BitBasis.neg
— Methodneg(index::Integer, nbits::Int) -> Integer
Return an integer with all bits flipped (with total number of bit nbits
).
Example
julia> neg(0b1111, 4) |> BitStr{4}
0000 ₍₂₎
julia> neg(0b0111, 4) |> BitStr{4}
1000 ₍₂₎
BitBasis.next_reordered_basis
— Methodnext_reordered_basis(basis, takers, differ)
Returns the next reordered basis accroding to current basis.
BitBasis.onehot
— Methodonehot([T=Float64], dit_str[; nbatch])
Create an onehot vector in type Vector{T}
or a batch of onehot vector in type Matrix{T}
, where index x + 1
is one. One can specify the value of the nonzero entry by inputing a pair.
BitBasis.packbits
— Methodpackbits(arr::AbstractArray) -> AbstractArray
pack bits to integers, usually take a BitArray as input.
BitBasis.readat
— Methodreadat(x, loc...) -> Integer
Read the dit config at given location.
BitBasis.readbit
— Methodreadbit(x, loc...)
Read the bit config at given location.
BitBasis.reorder
— Functionreorder(X::AbstractArray, orders)
Reorder X
according to orders
.
Although orders
can be any iterable, Tuple
is preferred inorder to gain as much performance as possible. But the conversion won't take much anyway.
BitBasis.setbit
— Methodsetbit(index::Integer, mask::Integer) -> Integer
set the bit at masked position to 1.
Example
julia> setbit(0b1011, 0b1100) |> BitStr{4}
1111 ₍₂₎
julia> setbit(0b1011, 0b0100) |> BitStr{4}
1111 ₍₂₎
julia> setbit(0b1011, 0b0000) |> BitStr{4}
1011 ₍₂₎
BitBasis.swapbits
— Methodswapbits(n::Integer, mask_ij::Integer) -> Integer
swapbits(n::Integer, i::Int, j::Int) -> Integer
Return an integer with bits at i
and j
flipped.
Example
julia> swapbits(0b1011, 0b1100) == 0b0111
true
locations i
and j
specified by mask could be faster when bmask
is not straight forward but known by constant.
mask_ij
should only contain two 1
, swapbits
will not check it, use at your own risk.
BitBasis.unsafe_reorder
— Functionunsafe_reorder(X::AbstractArray, orders)
Reorder X
according to orders
.
unsafe_reorder
won't check whether the length of orders
and the size of first dimension of X
match, use at your own risk.
BitBasis.unsafe_sub
— Methodunsafe_sub(a::UnitRange, b::NTuple{N}) -> NTuple{N}
Returns result in type Tuple
of a .- b
. This will not check the length of a
and b
, use at your own risk.
BitBasis.unsafe_sub
— Methodunsafe_sub(a::UnitRange{T}, b::Vector{T}) where T
Returns a .- b
, fallback version when b is a Vector
.
BitBasis.BitStr
— TypeBitStr{N,T} <: Integer
The struct for bit string with fixed length N
and storage type T
. It is an alias of DitStr{2,N,T}
.
BitStr{N,T}(integer)
BitStr64{N}(integer)
BitStr64(vector)
LongBitStr{N}(integer)
LongBitStr(vector)
Returns a BitStr
. When the input is an integer, the bits are read from right to left. When the input is a vector, the bits are read from left to right.
Examples
BitStr
supports some basic arithmetic operations. It acts like an integer, but supports some frequently used methods for binary basis.
julia> bit"0101" * 2
1010 ₍₂₎
julia> join([bit"101" for i in 1:10])
"101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎101 ₍₂₎"
julia> repeat(bit"101", 2)
101101 ₍₂₎
julia> bit"1101"[2]
0
BitBasis.DitStr
— TypeDitStr{D,N,T<:Integer} <: Integer
The struct for dit string with fixed length N
and storage type T
, where dit
is a extension of dit
from binary system to a d-ary system.
DitStr{D,N,T}(integer)
DitStr{D,N}(integer)
DitStr{D}(vector)
Returns a DitStr
. When the input is an integer, the dits are read from right to left. When the input is a vector, the dits are read from left to right.
Examples
julia> DitStr{3}([1,2,1,1,0])
01121 ₍₃₎
julia> DitStr{3, 5}(71)
02122 ₍₃₎
BitBasis.DitStr
— MethodDitStr(dit::SubDitStr{D,N,T}) -> DitStr{D,N,T}
Raise type SubDitStr
to DitStr
.
julia> x = DitStr{3, 5}(71)
02122 ₍₃₎
julia> sx = SubDitStr(x, 2, 4)
SubDitStr{3, 5, Int64}(02122 ₍₃₎, 1, 3)
julia> DitStr(sx)
212 ₍₃₎
BitBasis.IterControl
— TypeIterControl{S}
IterControl(n::Int, base::Int, masks, factors) -> IterControl
Iterator to iterate through controlled subspace. See also itercontrol
. S
is the number of chunks, n
is the size of Hilbert space, base
is the base of counter, masks
and factors
are helpers for enumerating over the target Hilbert Space.
BitBasis.LongLongUInt
— TypeLongLongUInt{C} <: Integer
A LongLongUInt{C}
is an integer with C
UInt
numbers to store the value.
BitBasis.ReorderedBasis
— TypeReorderedBasis{N, T}
Lazy reorderd basis.
BitBasis.ReorderedBasis
— MethodReorderedBasis(orders::NTuple{N, <:Integer})
Returns a lazy set of reordered basis.
BitBasis.SubDitStr
— TypeSubDitStr{D,N,T<:Integer} <: Integer
The struct as a SubString
-like object for DitStr
(SubString
is an official implementation of sliced strings, see String for reference). This slicing returns a view into the parent DitStr
instead of making a copy (similar to the @views
macro for strings).
SubDitStr
can be used to describe the qubit configuration within the subspace of the entire Hilbert space.It provides similar getindex
, length
functions as DitStr
.
SubDitStr(dit::DitStr{D,N,T}, i::Int, j::Int)
SubDitStr(dit::DitStr{D,N,T}, r::AbstractUnitRange{<:Integer})
Or by @views
macro for DitStr
(this macro makes your life easier by supporting begin
and end
syntax):
@views dit[i:j]
Returns a SubDitStr
.
Examples
julia> x = DitStr{3, 5}(71)
02122 ₍₃₎
julia> sx = SubDitStr(x, 2, 4)
SubDitStr{3, 5, Int64}(02122 ₍₃₎, 1, 3)
julia> @views x[2:end]
SubDitStr{3, 5, Int64}(02122 ₍₃₎, 1, 4)
julia> sx == dit"212;3"
true